A stabilized SQP method: superlinear convergence
نویسندگان
چکیده
Regularized and stabilized sequential quadratic programming (SQP) methods are two classes of methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a stabilized SQP method has been proposed that allows convergence to points satisfying certain secondorder KKT conditions (Report CCoM 13-04, Center for Computational Mathematics, University of California, San Diego, 2013). The method is formulated as a regularized SQP method with an implicit safeguarding strategy based on minimizing a bound-constrained primal-dual augmented Lagrangian. The method involves a flexible line search along a direction formed from the approximate solution of a regularized quadratic programming subproblem and, when one exists, a direction of negative curvature for the primal-dual augmented Lagrangian. With an appropriate choice of termination condition, the method terminates in a finite number of iterations under weak assumptions on the problem functions. Safeguarding becomes relevant only when the iterates are converging to an infeasible stationary point of the norm of the constraint violations. Otherwise, the method terminates with a point that either satisfies the second-order necessary conditions for optimality, or fails to satisfy a weak second-order constraint qualification. The purpose of this paper is to establish the conditions under which this second-order stabilized SQP algorithm is equivalent to the conventional stabilized SQP method. It is shown that the method has superlinear local convergence under assumptions that are no stronger than those required by conventional stabilized SQP methods. The required convergence properties are obtained by allowing a small relaxation of the optimality conditions for the quadratic programming subproblem in the neighborhood of a solution. Numerical results on both degenerate and nondegenerate problems are reported.
منابع مشابه
A Globally Convergent Stabilized Sqp Method: Superlinear Convergence
Regularized and stabilized sequential quadratic programming (SQP) methods are two classes of methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that allows convergence to points satisfying certain second-order KKT conditions (SIAM J. Optim., 23(4):198...
متن کاملSharp Primal Superlinear Convergence Results for Some Newtonian Methods for Constrained Optimization
As is well known, Q-superlinear or Q-quadratic convergence of the primal-dual sequence generated by an optimization algorithm does not, in general, imply Q-superlinear convergence of the primal part. Primal convergence, however, is often of particular interest. For the sequential quadratic programming (SQP) algorithm, local primal-dual quadratic convergence can be established under the assumpti...
متن کاملA Stabilized Sqp Method: Global Convergence
Stabilized sequential quadratic programming (SQP) methods for nonlinear optimization are designed to provide a sequence of iterates with fast local convergence regardless of whether or not the active-constraint gradients are linearly dependent. This paper concerns the global convergence properties of a stabilized SQP method with a primal-dual augmented Lagrangian merit function. The proposed me...
متن کاملSuperlinear Convergence of a Stabilized SQP Method to a Degenerate Solution
We describe a slight modi cation of the well-known sequential quadratic programming method for nonlinear programming that attains superlinear convergence to a primal-dual solution even when the Jacobian of the active constraints is rank de cient at the solution. We show that rapid convergence occurs even in the presence of the roundo errors that are introduced when the algorithm is implemented ...
متن کاملGlobalizing Stabilized Sqp by Smooth Primal-dual Exact Penalty Function
An iteration of the stabilized sequential quadratic programming method (sSQP) consists in solving a certain quadratic program in the primal-dual space, regularized in the dual variables. The advantage with respect to the classical sequential quadratic programming (SQP) is that no constraint qualifications are required for fast local convergence (i.e., the problem can be degenerate). In particul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 163 شماره
صفحات -
تاریخ انتشار 2017